Contaminación del Aire y Contaminación Atmosférica, ¿Qué es? Causas, Consecuencias, Imágenes

La contaminación del aire es una mezcla de partículas sólidas y gases en el aire. Las emisiones de los automóviles, los compuestos químicos de las fábricas, el polvo, el polen y las esporas de moho pueden estar suspendidas como partículas. El ozono, un gas, es un componente fundamental de la contaminación del aire en las ciudades. Cuando el ozono forma la contaminación del aire también se denomina smog.

Algunos contaminantes del aire son tóxicos. Su inhalación puede aumentar las posibilidades de tener problemas de salud. Las personas con enfermedades del corazón o de pulmón, los adultos de más edad y los niños tienen mayor riesgo de tener problemas por la contaminación del aire. La polución del aire no ocurre solamente en el exterior: el aire en el interior de los edificios también puede estar contaminado y afectar su salud.

¿Qué es Contaminación del Aire y Contaminación Atmosférica?

En nuestra sociedad actual, el avance tecnológico es enorme y en la obtención de satisfactores se ha perseguido generalmente el máximo beneficio, con el menor costo y esfuerzo. La acumulación de industrias, automóviles y otras fuentes de contaminación ha cumplido con aumentar la producción de bienes, pero a un enorme costo social, ya que ha originado una contaminación del ambiente que es incompatible con la salud humana y la sobrevivencia del ecosistema en que vivimos.

En las grandes urbes el fenómeno de la contaminación es crítico.

Sin comida, podemos vivir cerca de un mes. Sin agua, sólo unos cuantos días. Pero sin aire, moriríamos en minutos. Un aire envenenado es tan nocivo como la ausencia del mismo. En lugar de llevar oxígeno a nuestras células, la hemoglobina transporta veneno.

Quizá el caso más notorio en la historia de la contaminación ocurrió la semana del 4 al 10 de diciembre de 1952, cuando una masa de aire frío cubrió la ciudad de Londres. Debido a la baja temperatura, gran parte de la población prendió sus estufas de carbón, y la industria y la circulación de vehículos no se detuvieron. El día 6, la luz del Sol apenas penetraba la densa nube de contaminantes, que no podía salir del valle del Támesis debido a la menor temperatura de la masa superior de aire. La incidencia de ataques al corazón y las dificultades respiratorias creció. Cuando al fin el viento despejó el cielo, se estima que unas 4 000 personas habían muerto por razones atribuibles al fenómeno.

Ésta y otras catástrofes similares han hecho tomar conciencia a diversos sectores de la población, aunque muchos otros aún ignoran las letales consecuencias de la contaminación. 

Figura V.1. En la ciudad de México se emiten al día un promedio de cuatro mil toneladas de gases tóxicos que forman una capa contaminadora de hasta 300 metros de espesor. 

Vale la pena aclarar que la mano del hombre y la era tecnológica no son los únicos culpables de la impureza del aire. Se estima que cuatro erupciones volcánicas recientes (Krakatoa, 1883; Katami, 1912; Hekla, 1947; y Chichón, 1982) han arrojado más gases y partículas a la atmósfera que el hombre a lo largo de su historia.

En este capítulo revisaremos los aspectos químicos más relevantes de la contaminación atmosférica. Iniciamos con la descripción de la atmósfera, para luego considerar los diversos contaminantes y sus efectos y, finalmente, citar las medidas más generalizadas para su control. 

Figura V.2. El volcán Iztlacíhuatl (5 286 m) en el valle de México. 

LA ATMÓSFERA

La atmósfera que rodea la Tierra es una delgada capa de gases. Hasta unos 30 km de altura, el aire constituye un 99% del peso total de la atmósfera. Sólo existe el suficiente oxígeno para la subsistencia vital a alturas menores de los 6 km sobre el nivel del mar, y en los océanos (biosfera). 

Comparativamente, la atmósfera es como la piel de una manzana

La atmósfera se estructura en capas que se encuentran a diferentes temperaturas y compuestas por distintos gases:

  1. La troposfera, entre 0 y 10 km sobre el nivel del mar, dentro de la cual se desarrolla la vida aérea.

  2. La estratosfera, hasta 80 km de altura, es un "aire" muy enrarecido, con mucha menor densidad. En ella existe una capa de ozono, O3, de unos 20 km de altura, que resulta esencial para la vida. Esta capa es una especie de "escudo" que protege a la Tierra de radiaciones solares letales, conocidas como rayos ultravioleta.

  3. La ionosfera, que se extiende hasta unos 500 km hacia arriba, donde la concentración de materia es aún menor. Recibe su nombre debido a que la radiación ultravioleta y otros fenómenos eléctricos producen la ionización de sus componentes. Por lo tanto, allí existen iones. Estos son los responsables de que las ondas de radio "reboten" hacia la Tierra, lo que hace posible la comunicación radiofónica.

Para efectos de análisis de la contaminación, prestaremos atención a la troposfera y a la capa de ozono (O3) en la estratosfera.

Cerca de la superficie de la Tierra, la composición del aire es la que se presenta en el cuadro V.1. 

CUADRO V.1 Composición del aire (seco y limpio) al nivel del mar


Fórmula

% en volúmen

ppm


N2

78.09

780 900

O2

20.94

209 400

Ar

0.93

9 300

CO2

0.0318

318

Ne

0.0018

18

He

0.00052

5.2

CH4

0.00015

1.5

Kr

0.0001

1

H2

0.00005

0.5

N2O

0.000025

0.25

CO

0.00001

0.1

Xe

0.000008

0.08

O3

0.000002

0.02

NH3

0.000001

0.01

NO2

0.0000001

0.001

SO2

0.00000002

0.0002

Las concentraciones están dadas en partes por millón = ppm. 

ppm= número de moléculas en un millón de moléculas de aire

Si se desea obtener el porcentaje en volumen a partir de ppm, hay que dividir entre 10 000. Entonces, fundamentalmente, el aire consiste de 78% en volumen de N2, 21% de O2 y 1% de argón. 

Figura V.3. Principales capas de la atmósfera (no está a escala). 

Causas contaminación del aire

La contaminación del aire se debe  a los escapes de gas de motores a explosión, aparatos domésticos como la calefacción, y a las industrias que liberan gases, vapores y partículas sólidas que pueden mantenerse en suspensión y perjudican la vida y la salud tanto de humanos, animales y plantas.

La contaminación del aire puede causar trastornos físicos como: ardor en los ojos y en la nariz, irritación y picazón de la garganta; también problemas respiratorios.  Algunas sustancias químicas que se encuentran en el aire y pueden producir cáncer, malformaciones congénitas, daños cerebrales y trastornos del sistema nervioso.

También a causa de la contaminación, se ha reducido el espesor de la capa de ozono, esto produce el deterioro en personas, animales, edificios,  y otras estructuras; también es causante del smog (nube de niebla y gases), la cual reduce la visibilidad y constituye un obstáculo para la aviación.

Contaminación del aire: causas.

Algunos de los principales contaminantes son:

  • Monóxido de Carbono (CO): Es un gas inodoro e incoloro, cuando se inhala, sus moléculas ingresan al torrente sanguíneo; las bajas concentraciones producen mareos, jaqueca, fatiga, y en concentraciones mayores puede ser fatal.

  • Dióxido de Carbono (CO2): Es el principal gas causante del efecto invernadero, se origina a partir del carbón, petróleo y gas natural; en estado líquido o sólido produce quemaduras y cegueras, su inhalación es tóxica, y puede causar la muerte.

smog

  • Clorofluorcarbonos (CFC): Son sustancias químicas que se utilizan en la industria, por ejemplo en aires acondicionados, y sistemas de refrigeración.

  • Plomo: Es un metal que ocasiona diversos trastornos, especialmente en niños pequeños;  puede afectar el sistema nervioso y causar problemas digestivos. Algunos productos químicos contienen plomo, que es un agente cancerígeno.

Hay muchas formas de reducir la contaminación del aire, por ejemplo reducir el uso del automóvil, usar medios de transporte público o bicicleta; caminar más es la mejor manera de reducir la polución atmosférica.

monóxido de carbono

Principales contaminantes

CONTAMINANTE

PRINCIPALES FUENTES

COMENTARIOS

Monóxido de carbono (CO)

Gases de escape de vehículos de motor; algunos procesos industriales

Máximo permitido: 10 mg/m3 (9 ppm) en 8 hr; 40 mg/m3 en 1 hr (35 ppm)

Dióxido de azufre (SO2)

Instalaciones generadoras de calor y electricidad que utilizan petróleo o carbón con contenido sulfuroso; plantas de ácido sulfúrico

Máximo permitido: 80 µg/m3 (0,03 ppm) en un año; 365 µg/m3 en 24 hr (0,14 ppm)

Partículas en suspensión

Gases de escape de vehículos de motor; procesos industriales; incineración de residuos; generación de calor y electricidad; reacción de gases contaminantes en la atmósfera

Máximo permitido: 75 µg/m3 en un año; 260 µg/m3 en 24 hr; compuesto de carbón, nitratos, sulfatos y numerosos metales, como el plomo, el cobre, el hierro y el cinc

Plomo (Pb)

Gases de escape de vehículos de motor, fundiciones de plomo; fábricas de baterías

Máximo permitido: 1,5 µg/m3 en 3 meses; la mayor parte del plomo contenido en partículas en suspensión

Óxidos de nitrógeno (NO, NO2)

Gases de escape de vehículos de motor; generación de calor y electricidad; ácido nítrico; explosivos; fábricas de fertilizantes

Máximo permitido: 100 µg/m3 (0,05 ppm) en un año para el NO2; reacciona con hidrocarburos y luz solar para formar oxidantes fotoquímicos

Oxidantes fotoquímicos (fundamentalmente ozono [O3]; también nitrato peroxiacetílico [PAN] y aldehídos)

Se forman en la atmósfera como reacción a los óxidos de nitrógenos, hidrocarburos y luz solar

Máximo permitido: 235 µg/m3 (0,12 ppm) en 1 hr

Hidrocarburos no metánicos (incluye etano, etileno, propano, butanos, pentanos, acetileno)

Gases de escape de vehículos de motor; evaporación de disolventes; procesos industriales; eliminación de residuos sólidos; combustión de combustibles

Reacciona con los óxidos de nitrógeno y la luz solar para formar oxidantes fotoquímicos

Dióxido de carbono (CO2)

Todas las fuentes de combustión

Posiblemente perjudicial para la salud en concentraciones superiores a 5000 ppm en 2-8 hr; los niveles atmosféricos se han incrementado desde unas 280 ppm hace un siglo a más de 350 ppm en la actualidad; probablemente esta tendencia esté contribuyendo a la generación del efecto invernadero


Consecuencias de la contaminación del aire

Los gases contaminantes que llegan al aire debido a la actividad industrial, los vehículos motorizados, los sistemas de calefacción y muchas otras fuentes de contaminación, producen una mezcla gaseosa y de material particulado que, en sucesivas transformaciones, originan graves problemas ambientales como el smog industrial y fotoquímico, la lluvia ácida, la destrucción de la capa de ozono y el efecto invernadero.

1. Smog industrial: Las industrias que se sirven de la combustión del carbón como azufre (SO2), ceniza, hollín y compuestos orgánicos volátiles, que cubre el cielo de una densa nube gris que disminuye la visibilidad y afecta la salud.

Debido a las capas de inversión térmica que se producen en la atmósfera, en los días fríos y húmedos el smog industrial se torna más dañino para la salud.

Inversión térmica: La formación del smog, tanto industrial como fotoquímico, se ve favorecida por ciertas condiciones geográficas y meteorológicas. Por ejemplo, la ubicación topográfica y geográfica del valle donde se ubica Santiago. Los meteorólogos explican que normalmente en la troposfera la temperatura debiera disminuir a medida que aumenta la altura; así, el aire caliente, cercano a la superficie terrestre, se eleva y se mezcla con las capas superiores de aire frío. De esta forma el aire se renueva y los contaminantes se dispersan hacia arriba ayudados por las corrientes de aire verticales (figura: situación normal). Sin embargo, durante el invierno a veces ocurre una inversión de este patrón normal de temperatura: después de una disminución inicial, la temperatura del aire comienza a aumentar y una inusual capa de aire caliente se establece sobre la capa de aire frío, sin que esta pueda elevarse (figura: inversión térmica). En consecuencia, los contaminantes quedan atrapados bajo la capa de aire caliente hasta que las condiciones atmosféricas cambien. El efecto de la inversión térmica es aun más grave en ciudades rodeadas por montañas, ya que los contaminantes acumulados comienzan a sufrir reacciones fotoquímicas, formando el dañino smog fotoquímico.

2. Smog fotoquímico: El alto nivel de congestión vehicular es una de las principales causas de la formación del smog fotoquímico (del griego photo, que significa luz). Se percibe como una niebla que empapa el aire de un color amarillento y se forma cuando los óxidos de nitrógeno (NOx) y los hidrocarburos (RH) liberados por los automóviles experimentan una serie de reacciones activadas por la luz ultravioleta (UV) que provienen del sol.

El dióxido de nitrógeno (NO2) absorbe la radiación UV, sufriendo una compleja secuencia de transformaciones que forma productos tóxicos; uno de ellos es el ozono (O3) que, a nivel troposférico, constituye un serio contaminante del naire; este gas es un poderoso irritante de las vías respiratorias, razón por la cual los que padecen asma o enfermedades cardiovasculares son muy susceptibles a él.

3. Lluvia ácida: Debido a que el agua de lluvia disuelve el CO2 atmosférico, las precipitaciones son normalmente ácidas, ya que tiene un pH aproximado de 5,6. Sin embargo, el grado de acidez de la lluvia de la lluvia se elevado considerablemente en los últimos años.

La lluvia ácida se debe principalmente al incremento de olas emisiones de óxidos de azufre que, en el aire, se convierten en pequeñas gotitas de ácido sulfúrico (H2SO4), según las siguientes ecuaciones:

2SO2 + O2 → 2SO3

SO3 + H2O → H2SO4

El trióxido de azufre una vez formado (SO3), una vez formado reacciona con el vapor de agua para formar H2SO4. Este ácido se concentra en la base de las nubes, aumentando el grado de acidez de las precipitaciones.


La lluvia ácida constituye un fenómeno sin límites geográficos más que ningún otro problema ambiental; los compuestos gaseosos emitidos son transportados por los cursos de los vientos y pueden generar lluvia ácida a miles de kilómetros de sus fuentes de origen, aun en otro país.


La precipitaciones ácidas tiene un impacto ambiental severo; cambian el pH del suelo, afectando los cultivos; acidifican lagos, ríos amenazando la conservación de la vida acuática; al mismo tiempo desintegran las edificaciones, especialmente las construcciones de mármol y de piedra.


4. Destrucción de la capa de ozono: Hoy se ha demostrado que una clase de compuestos sintéticos, denominados clorofluorocarbonos (CFCs), son los responsables de este problema. Los CFCs, como el CF2Cl2 y CFCl3, llamados comercialmente freones, son ampliamente utilizados en los aerosoles y en los sistemas de refrigeración y aire acondicionado.

Cuando los CFCs alcanzan la estratosfera, forman radicales cloro (Cl*) por la acción de la radiación UV, de acuerdo a la ecuación:

UV
CF2Cl2 → CF2Cl + Cl*

El radical cloro reacciona con el ozono (O3), produciendo el radical monóxido de cloro (ClO*) y oxígeno (O2); a su vez, el radical ClO* se combina con átomos de O2, formando nuevamente radicales cloro, los cuales pueden reiniciar la serie de reacciones, según las siguientes ecuaciones:

UV
Cl* + O3 → ClO* + O2

ClO* + O → Cl* + O2

O3 + O → 2O2 Reacción neta

Hoy este ciclo químico se ha identificado como el causante de cerca del 80% de la pérdida de ozono en la estratosfera.

5. Efecto invernadero: En los últimos años hay una creciente preocupación por el llamado calentamiento global del planeta.

La luz solar viaja a través de la atmósfera y va interactuando con moléculas gaseosas y material particulado, lo que previene que gran parte de esta radiación alcance la corteza terrestre. Así, del total de radiación solar, solo cerca del 50% es efectivamente absorbido por la superficie de la Tierra, y luego es reirradiado hacia el espacio, principalmente en forma de radiación infrarroja (IR). Por su parte, una amplia proporción de la radiación IR proveniente de la superficie es reabsorbida por los gases atmosféricos y luego reirradiada hacia la Tierra, antes de que pueda escapar hacia el espacio. Estos gases, que actúan tal como un panel de vidrio de un invernadero, se denominan gases invernaderos e incluyen el CO2, el vapor de agua, el metano (CH4), el óxido nitroso (N2O), el ozono y los CFCs.



El efecto del proceso de absorción y reirradiación de la energía IR hace aumentar la temperatura de la superficie terrestre, lo cual conduce a la desertificación, al deshielo de los casquetes polares, al aumento del nivel del agua de ríos y océanos y al desequilibrio climático.

¿Sabías Qué?

Los vehículos motorizados han llegado a ser parte indispensable de la vida de hoy; sin embargo, son los causantes de casi el 50% de la contaminación atmosférica, siendo la principal fuente de emisiones de monóxido de carbono (CO), óxidos de nitrógeno (NOx) y los hidrocarburos (RH). Para disminuir los índices de contaminación atmosférica, se han ido incorporando nuevos adelantos técnicos como el convertidor catalítico, que es un dispositivo que utiliza un catalizador de platino, paladio o radio para convertir las emisiones procedentes de la quema de la gasolina (CO, NOx, RH), en productos menos reactivos (CO2, N2, H2O).

www.Santificacion.Info
¡DVDs, Libros y Artículos Gratis!
FREE DVDs & VIDEOS
WATCH & DOWNLOAD ALL OUR DVDs & VIDEOS FOR FREE!